Text Analysis for Monitoring Personal Information Leakage on Twitter
نویسندگان
چکیده
Social networking services (SNSs) such as Twitter and Facebook can be considered as new forms of media. Information spreads much faster through social media than any other forms of traditional news media because people can upload information with no time and location constraints. For this reason, people have embraced SNSs and allowed them to become an integral part of their everyday lives. People express their emotional status to let others know how they feel about certain information or events. However, they are likely not only to share information with others but also to unintentionally expose personal information such as their place of residence, phone number, and date of birth. If such information is provided to users with inappropriate intentions, there may be serious consequences such as online and offline stalking. To prevent information leakages and detect spam, many researchers have monitored email systems and web blogs. This paper considers text messages on Twitter, which is one of the most popular SNSs in the world, to reveal various hidden patterns by using several coefficient approaches. This paper focuses on users who exchange Tweets and examines the types of information that they reciprocate other’s Tweets by monitoring samples of 50 million Tweets which were collected by Stanford University in November 2009. We chose an active Twitter user based on “happy birthday” rule and detecting their information related to place to live and personal names by using proposed coefficient method and compared with other coefficient approaches. As a result of this research, we can conclude that the proposed coefficient method is able to detect and recommend the standard English words for non-standard words in few conditions. Eventually, we detected 88,882 (24.287%) more name included Tweets and 14,054 (3.84%) location related Tweets compared by using only standard word matching method.
منابع مشابه
A High-Performance Model based on Ensembles for Twitter Sentiment Classification
Background and Objectives: Twitter Sentiment Classification is one of the most popular fields in information retrieval and text mining. Millions of people of the world intensity use social networks like Twitter. It supports users to publish tweets to tell what they are thinking about topics. There are numerous web sites built on the Internet presenting Twitter. The user can enter a sentiment ta...
متن کاملDesign and Test of the Real-time Text mining dashboard for Twitter
One of today's major research trends in the field of information systems is the discovery of implicit knowledge hidden in dataset that is currently being produced at high speed, large volumes and with a wide variety of formats. Data with such features is called big data. Extracting, processing, and visualizing the huge amount of data, today has become one of the concerns of data science scholar...
متن کاملText Analytics of Customers on Twitter: Brand Sentiments in Customer Support
Brand community interactions and online customer support have become major platforms of brand sentiment strengthening and loyalty creation. Rapid brand responses to each customer request though inbound tweets in twitter and taking proper actions to cover the needs of customers are the key elements of positive brand sentiment creation and product or service initiative management in the realm of ...
متن کاملA Model for Detecting of Persian Rumors based on the Analysis of Contextual Features in the Content of Social Networks
The rumor is a collective attempt to interpret a vague but attractive situation by using the power of words. Therefore, identifying the rumor language can be helpful in identifying it. The previous research has focused more on the contextual information to reply tweets and less on the content features of the original rumor to address the rumor detection problem. Most of the studies have been in...
متن کاملSelf-Disclosure and Relationship Strength in Twitter Conversations
In social psychology, it is generally accepted that one discloses more of his/her personal information to someone in a strong relationship. We present a computational framework for automatically analyzing such self-disclosure behavior in Twitter conversations. Our framework uses text mining techniques to discover topics, emotions, sentiments, lexical patterns, as well as personally identifiable...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. UCS
دوره 19 شماره
صفحات -
تاریخ انتشار 2013